wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

The value of limx([100xsinx]+[99sinxx]), where [.] denotes the greatest integer function, is

A
197
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
198
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
199
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Does not exist
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 198
\(For~x>0 \\
sin x<x \\
\Rightarrow \frac{sin x}{x}<1 \\
\therefore \left [ \frac{sin x}{x} \right ]=98 \\
and~\frac{x}{sin x}>1 \\
\therefore \frac{100 x}{sin x}=100 \\
\Rightarrow \left [ \frac{100 x}{sin x} \right ]=100 \\
\therefore \underset{x\rightarrow 0+}{lim} \left ( \left [ \frac{100 x}{sin x} \right ]+\left [ \frac{99 sin x}{x} \right ] \right ) \\
=100+98 \\
=98 \\
For~x<0 \\
sin x>x \\
For~x>0 \\
sin x<x \\
\Rightarrow \frac{sin x}{x}<1 \\
\therefore \left [ \frac{99 sin x}{x} \right ]<99 \\
\Rightarrow \left [ \frac{99 sin x}{x} \right ]=99 \\
and~\frac{x}{sin x}>1 \\
\therefore \frac{100 x}{sin x}>100 \\
\Rightarrow \left [ \frac{100 x}{sin x} \right ]=100 \\
\underset{x\rightarrow 0-}{lim}\left ( \left [ \frac{100 x}{sin x} \right ]+\left [ \frac{99 sin x}{x} \right ] \right ) \\
=100 + 98 = 198 \\
Hence,~\underset{x\rightarrow 0}{lim}\left ( \left [ \frac{100 x}{sin x} \right ]+\left [ \frac{99 sin x}{x} \right ] \right )=198





flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon