The value of x and y which satisfies the equation is 4sinx+31cosy=11 and 5.16sinx−2.3secy=2
Let, 4sinx=l,31cosy=m
Then the equation becomes
l + m=11 .....(1)
5l2−2m=2 .....(2)
Now apply operation, 2×(1)+(2)
or, 2l+5l2=24
or 5l2+2l−24=0 or 5l2+12l−10l−24=0
or, l(5l+12)−2(5l+12)=0
or, (5l + 12) (l - 2) = 0 So l= 2, -125 . If l = 2,4sinx=2 22sinx=2;∴2sinx=1 ∴sinx=12
If l=−125 then 4sinx=−125 which is impossible for 4sinx<0
When l=2, we get m=11−2=9
∴31cosy=32
∴1cosy=2;cosy=12
When l=−125, x has no solution. So y has no solution.
Thus we have sinx=12,cosy=12
∴x=nπ+(−1)nπ6 and y=2mπ±π3 where m, n ∈ I.