The correct option is D x∈(0,1)∪(1,2)∪(7,∞)
x2−9x+14>0⇒(x−2)(x−7)>0⇒x∈(−∞,2)∪(7,∞)
For logab to be defined,
a>0 and a≠1
∴x∈(0,1)∪(1,∞)
logx(x2−9x+14)=logx|x−2|+logx|x−7|
⇒logx(x2−9x+14)=logx|x2−9x+14|
So, the equation is true for all value in the domain.