The value of x for which sin−1{sin(2x2+41+x2)}<π−3 is
(o, 1)
(-1, 0)
(-1, 1)
(0, 2)
sin−1{sin(2x2+41+x2)}<π−3 ⇒π−(2+21+x2)<π−3 ⇒−21+x2<−1 ⇒2>1+x2 ⇒x2−1<0 ⇒xϵ(−1,1)
Find the value of x so that; (i) (34)2x+1=((34)3)3(ii) (25)3×(25)6=(25)3x(iii) (−15)20÷(−15)15=(−15)5x(iv) 116×(12)2=(12)3(x−2)
The value of k, for which (cos x+sin x)2+k sin x cos x−1=0 is an identity, is