tan−1x + sin−1x = tan−12x⇒sin−1x = tan−12x − tan−1x⇒tan−1x√1−x2 = tan−1(2x−x1+2x2]⇒x√1−x2 = x1+2x2⇒2x3 + x =x√1−x2⇒2x3 − x√1−x2 + x = 0⇒x(2x2 − √1−x2 +1) = 0⇒x = 0 or 2x2+1 = √1−x2⇒x=0 or 4x4 +4x2 +1 = 1−x2⇒x=0 or 4x4 +5x2 = 0⇒x=0 is the only solution.