The Value of x, for which the 6-th term in the expansion of
⎧⎨⎩2log2√(9y−1+7)+12[(1/5)log2(3x−1+1)]⎫⎬⎭7is 84, is equal to:
2 or 1
⎧⎨⎩2log2√(9y−1+7)+12[(1/5)log2(3x−1+1)]⎫⎬⎭7
= {(9X−1+7)1/2+1(3x−1+1)1/5}7
∴ T6=T5+1=7C5.[9X−1+7]1(36X−1+1)=84
∴ 9x−1+7=4(3X−1+1)
∴ Putting 3x=y , we ger
y29+7=4(y3=1)
⇒ y2+63=12y+36⇒y2−12y+27=0
⇒ y = 3,9.
y = 3 ⇒ 3x=3⇒x=1
y = 9 ⇒ 3x=32⇒x=2
∴ x = 1 or 2.