The value of x for which |x−3|+|x−4|=9 is
8, 1
8, -1
-8, 1
-8, -1
Given: |x−3|+|x−4|=9
⇒ x−3+x−4=±9
Case 1
x−3+x−4=9
2x−7=9
2x=16
⇒ x=8
Case 2
x−3+x−4=−9
2x−7=−9
2x=−2
⇒ x=−1
Hence, x can take the values 8,-1
Find the value of a for which (x + 1) is a factor of (ax3+x2−2x+4a−9).