The value of x∈(0,90∘) satisfying cosx=sin61∘+sin47∘−sin25∘−sin11∘, where sin18∘=√5−14
cos36∘=√5+14
Consider the given equation.
cosx=sin61∘+sin47∘−sin25∘−sin11∘
cosx=sin47∘−sin25∘+sin61∘−sin11∘
We know that
sinC−sinD=2cos(C+D2)⋅sin(C−D2)
Therefore,
cosx=2cos(47∘+25∘2)⋅sin(47∘−25∘2)+2cos(61∘+11∘2)⋅sin(61∘−11∘2)
cosx=2cos(72∘2)⋅sin(22∘2)+2cos(72∘2)⋅sin(50∘2)
cosx=2cos(36∘)⋅sin(11∘)+2cos(36∘)⋅sin(25∘)
cosx=2cos(36∘)[sin(25∘)+sin(11∘)]
cosx=2cos(36∘)[2sin(25∘+11∘2)⋅cos(25∘−11∘2)]
cosx=4cos(36∘)sin(18∘)⋅cos(7∘)
Since,
sin18∘=√5−14
cos36∘=√5+14
Therefore,
cosx=4(√5+14)(√5−14)⋅cos(7∘)
cosx=(5−14)⋅cos(7∘)
cosx=(44)⋅cos(7∘)
cosx=cos(7∘)
x=7∘
Hence, this is the answer.