The value of x ∈(−2π,2π) such that sin x+icos x1+i, where i=√−1, is purely imaginary are given by
, nϵZ
sin x+i cos x1+i=(1−i)(sinx+icosx)(1+i)(1−i) =sin x+cos x+i(cos x−sin x)2 ⇒sin x+cos x=0⇒tan x=−1 ∴x=nπ−π4, n∈Z