As, →a,→b,→c form a linearly dependent system. So one vector can be expressed as linear combination of other two.
⇒→a=λ1→b+λ2→c
(where λ1,λ2 are scalars.)
⇒^i−2^j+^k=λ1(−2^i+3^j−4^k)+λ2(^i−^j+x^k)
equating cofficients of ^i,^j and ^k both sides,
1=−2λ1+λ2⋯(i)−2=3λ1−λ2⋯(ii)1=−4λ1+xλ2⋯(iii)
on solving (i) and (ii): we get λ1=−1,λ2=−1
From (iii), we get
x=3