The correct option is E π8
Given, ∣∣
∣∣cos2xsin2xsin2xsin2xcos2xsin2xsin2xsin2xcos2x∣∣
∣∣=0;xϵ[0,π4]
Applying operation: R1→R1+R2+R3, we get
∣∣
∣∣cos2x+2sin2x2sin2x+cos2x2sin2x+cos2xsin2xcos2xsin2xsin2xsin2xcos2x∣∣
∣∣=0
⇒(2sin2x+cos2x)∣∣
∣∣111sin2xcos2xsin2xsin2xsin2xcos2x∣∣
∣∣=0
Now, apply operation
C2→C2−C1 and C3→C3−C1, we get
(2sin2x+cos2x)
∣∣
∣∣100sin2xcos2x−sin2x0sin2x0cos2x−sin2x∣∣
∣∣=0
Expanding along R1, we get
(2sin2x+cos2x)(cos2x−sin2x)2=0
⇒2sin2x+cos2x=0
or cos2x−sin2x=0
⇒tan2x=−12
or tan2x=1=tanπ4
∵x≠12tan−1(−12)
∴x=π8ϵ[0,π4].