The correct option is C R−{x:x=3nπ2±3π4}
sin4(x3)+cos4(x3)>12
⇒1−2sin2(x3)cos2(x3)>12
⇒1−12sin2(2x3)>12
⇒sin2(2x3)<1
which is always true except when sin2(2x3)=1
This means 2x3=nπ±π2 or x=3nπ2±3π4Hence, solution set of the inequality is R−{x:x=3nπ2±3π4,n∈Z}.