The correct options are
A 1+2√5 B 1−√53The given equation is valid for
x+1x−3>0∴x∈(−∞,−1)∪(3,∞) ...(1)
And the given equation can be written as
(x−3)(x+1)+3(x−3)√|(x+1)|√|x−3|−28=0 ...(2)
On that domain, we have
3(x−3)√|x+1|√|x−3|=3√(x+1)(x−3), if x>3 and
3(x−3)√|x+1|√|x−3|=−3√(x+1)(x−3), if x<−1
Therefore equation (2) is equivalent to the collection
{(x−3)(x+1)+3√(x+1)(x−3)−28=0ifx>3(x−3)(x+1)−3√(x+1)(x−3)−28=0ifx<−1⇔⎧⎪⎨⎪⎩(√(x−3)(x+1)+7)(√(x−3)(x+1)−4)=0ifx>3(√(x−3)(x+1)−7)(√(x−3)(x+1)+4)=0ifx,−1
First system from this Collection
√(x−3)(x+1)+7>0∴√(x−3)(x+1)−4=0Ifx>3⇒(x−3)(x+1)=16⇒x2−2x−19=0∴x=2±√4+762∴x=1±2√5Butx>3,∴x=1+2√5
And second system from this collection
√(x−3)(x+1)+4>0∴√(x−3)(x+1)−7=0Ifx>−1⇒(x−3)(x+1)=49⇒x2−2x−52=0∴x=2±√4+2082x=1±√1+52∴x=1±√53Butx<−1,∴x=1−√53
Combining above two results, we get the solution of the original equation as
x1=1+2√5 andx2=1−√53.