The value of x + y + z is 15 if a, x, y, b are in A.P. while the value of 1x+1y+1z is 58 if a, x, y, z b are H.P., then a2+b2=
52
a, x, y, b are in A.P ⇒a+b2
x + z = a + d + b – d = a + b, where d is the common difference
∴x+y+z=15⇒a+b2+(a+b)=15⇒a+b=10
a, x, y, z, b are in H.P ⇒1a,1x,1y,1z,1b are in A.P
1x+1y+1z=12(1a+1b)+(1a+1b)=32(1a+1b)=32(a+b)ab=58,given
∴ab=85×32×10=24 [using(1)]
Using (1) and (2) ⇒ (a, b) = (4, 6) ⇒a2+b2=52