We have,
Given that,
xyz=152 if x,y,z in an A.P.
xyz=185 if x,y,z in H.P.
If d is the common difference this A.P.
a,x,y,z,b
Then,
d=b−an+1=b−a4
Also y=a+b2
x=3a+b4
And
z=3b+a4
Then,
xyz=152=(3a+b2)(a+b2)(3b+a4) …… (1)
If a,x,y,z,b are in H.P.
⇒1a,1x,1y,1z,1b are in A.P.
y=H.M. of aandb
⇒b=y=2aba+b
⇒1y=a+b2ab
Now,
1x=3a+1b4
⇒4ab3b+a=x
z=4ab3a+b
Now, given that,
xyz=185=(4ab3b+a)(2aba+b)(4ab3a+b)......(2)
On multiplying (1) and (2) to and we get,
a3b3=185×152=27
(ab)3=33
Now,
ab=3
Then, aandb are positive integer.
Now,
ab=1×3
so,
a=1,b=3
Hence, this is the
answet.