The correct option is A 0.125
Given (4t2+1)dydt+8yt−t=0
dydt+8t4t2+1y=t4t2+1
IF =e∫8t4t2+1dt=eln(4t2+1)=4t2+1
Solution is, y(I.F)=∫ I.F Q(t)dt+C
Hence the general solution is,
y(4t2+1)=t22+C
Given, y(t =1) = 0, therefore,
0(4×12+1)=122+C
C=−12
Hence the solution is,
y(4t2+1)=t22−12
i.e., y=t2−12(4t2+1)=1−1t28+2t2
y(∞)=18=0.125