The correct option is B cos4mπn(n+1)+isin4mπn(n+1),m=1,2,...
We have,
logz+logz2+...+logzn=0
⇒log(z⋅z2⋯zn)=0
⇒logz⎧⎪⎨⎪⎩n(n+1)2⎫⎪⎬⎪⎭=0
⇒zn(n+1)2=1
⇒zn(n+1)2=e2mπ,m=0,1,2,…
⇒z=e4mπn(n+1)
⇒z=cos4mπn(n+1)+isin4mπn(n+1),m=0,1,2,…
Hence, option (A) is correct.