The value (s) of∫01x41-x41+x2dx is (are)
227-π
2105
0
7115-3π2
Explanation for the correct option:
Given, ∫01x41-x41+x2dx
Simplifying,
∫01x41-x41+x2dx=∫01x4-11-x4+1-x41+x2dx=∫01x2+1x2-11-x41+x2dx+∫011-x21-x21+x2dx=∫01x2-11-x4dx+∫011+x2-2x21+x2dx=∫01x2-11-x4+1+x2+4x1+x2-4xdx=∫01x6-4x5+5x4-4x3+4-41+x2dx=x77-4x66+5x55-4x33+4x-4tan-1x01=17-46+1-43+4-4π4=227-π
Hence, option A is correct.