The correct option is A {29}
Let common root be α.
(1−2k)α2−6kα−1=0
kα2−α+1=0
Using condition of one root common, we get
α2−6k−1=α−k−(1−2k)=1−(1−2k)+6k2
⇒α2−(6k+1)=αk−1=16k2+2k−1
⇒α2=−(6k+1)6k2+2k−1, α=k−16k2+2k−1
Hence, (k−1)2=−(6k+1)(6k2+2k−1)
⇒−k2+2k−1=36k3+12k2−6k+6k2+2k−1
⇒36k3+19k2−6k=0
⇒k(36k2+19k−6)=0
As k≠0, then
36k2+19k−6=0
⇒36k2+27k−8k−6=0
⇒9k(4k+3)−2(4k+3)=0
⇒(4k+3)(9k−2)=0
∴k=−34,k=29