The correct option is D 2√3
We know that the equation of the normal of the conic x2a2−y2b2=1 at point (asecθ,btanθ) is
axcosθ+bycotθ=a2+b2 or
y=−axbsinθ+a2+b2bcotθ
Comparing above equation with the equation y=mx+25√33 and taking a=4,b=3, we get,
a2+b2bcotθ=25√33
⇒16+93cotθ=25√33
⇒tanθ=√3
⇒sinθ=√32 or −√32
m=−absinθ=−2√3 or 2√3
Alternate solution
Equation of normal to hyperbola in slope form is
y=mx±(a2+b2)m√a2−b2m2
Comparing with the given equation, we get
25√33=(a2+b2)m√a2−b2m2
⇒ 25m√16−9m2=25√33
⇒ 3m2=16−9m2
⇒ m2=1612=43
∴ m=±2√3