The value/s of θ lying between 0 and π2 and satisfying the equation ∣∣ ∣ ∣∣1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sin4θsin2θcos2θ1+4sin4θ∣∣ ∣ ∣∣=0,are
7π24
11π24
Apply C1→C1+C2
Δ=∣∣ ∣ ∣∣2cos2θ4 sin 4 θ21+cos2θ4 sin 4 θ1cos2θ1+4sin4θ∣∣ ∣ ∣∣=0
Now applying R2→R2−R1 and R3→R3−R1
△=∣∣ ∣∣2cos2θ4 sin 4 θ010−101∣∣ ∣∣=0
⇒2+4 sin 4 θ=0 by expansion with R2
⇒sin 4 θ=−12=−sin(π6)=sin(−π6)
∴4 θ=nπ+(−1)n(−π6)∴θ=6n−(−1)n24π
The value of θ lying between 0 and π2 are 7π24 and 11π24 for n = 1 and 2