The value(s) of θ, which satisfy 3−2cosθ−4sinθ−cos2θ+sin2θ=0 is/are
3−2cosθ−4sinθ−cos2θ+sin2θ=0
sin2θ−2cosθ+3−4sinθ−(1−2sin2θ)=0
2cosθ(sinθ−1)+2sin2θ−4sinθ+2=0
2cosθ(sinθ−1)+2(sinθ−1)2=0
Or
2(sinθ−1)(cosθ+sinθ−1)=0
sinθ=1
Or
θ=2nπ+π2.
And
cosθ+sinθ−1=0
Or
√2[sin(θ+π4)]=1
Or
sin(θ+π4)=1√2
Or
θ+π4=2nπ+π4
Or θ=2nπ.