The correct options are
A −1+√134
C −1−√134
D 12
x9+98x6+2764x3−x+219512=0
⇒83x9+9⋅82x6+27⋅8x3−83x+219=0
⇒[8x3+3]3=512x−192
⇒x3+38=(x−38)1/3
Now, let f(x)=x3+38 where f:R→R
Then, f−1(x)=(x−38)1/3
⇒f(x)=f−1(x)
We know that f(x) and f−1(x) is symmetrical about y=x line.
∴f(x)=f−1(x)=x
⇒x3+38=x⇒(2x−1)(4x2+2x−3)=0
⇒x=12,−1+√134,−1−√134