wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The values of θ0,π4 satisfying tan 5θ = cot 2θ are ______________.

Open in App
Solution

for θ 0,π4
tan 5θ = cot 2θ
i.e tan 5θ = 1tan2θ
⇒ tan 5θ tan2θ = 1 ...(1)
Since
tan (x + y) = tan x + tan y1-tan x tan y
i.e tan(5θ + 2θ ) = tan 5θ + tan 2θ1-tan 5θ tan2θ
i.e tan 7θ = tan 5θ + tan 2θ0 (from 1)
i.e tan 7θ is not defined
i.e tan 7θ = tan π2
⇒ 7θ = nπ +π2
i.e θ = nπ7 + π14
If θ0, π4, θ=π14 , 3π14

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon