The values of ′a′ and ′b′ so that the functionf(x)= ⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩x+a√2sinx,0≤x<π42xcotx+b,π4≤x≤π2acos2x−bsinx,π2<x≤π is continuous at x=π4,π2 are
A
a=π6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a=−π6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
b=−π12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
b=−π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cb=−π12 f(x) is continuous in the interval 0≤x<π4,π4<x<π2,π2<x≤π
We need to make the function continuous at x=π4,π2
For continuity at x=π4,limx→π4−f(x)=limx→π4+f(x)=f(π4) limx→(π4)−(x+a√2sinx)=limx→(π4)+(2xcotx+b)=f(π4) ⇒π4+a√2sin(π4)=2.π4.cot(π4)+b=2π4.cot(π4)+b ⇒π4+a=π2+b⇒a−b=π4...(1)
For continuity at x=π2,limx→π2−f(x)=limx→π2+f(x)=f(π2) ⇒limx→π2−(2xcotx+b)=limx→(π2)+(acos2x−bsinx)=acosπ−bsinπ2 ⇒0+b=−a−b⇒a+2b=0...(2)
From equation (1) and (2) a=π6,b=−π12