The values of ′a′ & ′b′ so that the polynomial x3−ax2−13x+b is divisible by (x−1) & (x+3) are
The correct option is A: a=3,b=15
Given, f(x)=x3−ax2−13x+b
f(x) is divisible by (x−1) and (x+3)
∴f(1)=0 and f(−3)=0 [Using Factor theorem]
Now, f(1)=0
(1)3−a(1)2−13(1)+b=0
⇒1−a−13+b=0
⇒−a+b=12……(i)
And, f(−3)=0
(−3)3−a(−3)2−13(−3)+b=0
⇒−27−9a+39+b=0
⇒−9a+b=−12……(ii)
Now subtracting eq.(ii) from (i), we get
−a+b−(−9a+b)=12−(−12)
⇒8a=24
⇒a=3
By putting a=3 in equation (i), we get
−3+b=12
⇒b=15
So, a=3,b=15