The values of a for which the equation 2x2 - 2(2a +1 ) x + a ( a-1 ) = 0 has
roots α & β satisfying the condition α < a < β , are
( - , - 3 ) ( 0 , )
Since 'a' lies between the roots of the given equation,
∴ 2f(a) < 0 ⇒ f(a) < 0
Here f(x) = 2x2 - 2 ( 2a +1) x + a (a-1)
∴ f(a) = 2a2 - 2(2a + 1)a + a(a-1) < 0
⇒ - a2−3a < 0 ⇒ a (a+3) > 0
⇒ a ∈ ( - ∞ , -3 ) ∪ ( 0 , ∞)