The values of b and c for which the identity f(x+1)-f(x)=8x+3 is satisfied, wheref(x)=bx2+cx+d , are
b=2,c=1
b=4,c=-1
b=-1,c=4
b=-1,c=1
Explanation for the correct answer.
Given:f(x+1)-f(x)=8x+3, f(x)=bx2+cx+d
⇒f(x+1)-f(x)=8x+3⇒b(x+1)2+c(x+1)+d-bx2-cx-d=8x+3⇒b(x+1)2-x2+c=8x+3⇒bx2+1+2x-x2+c=8x+3⇒b1+2x+c=8x+3⇒b+c+2bx=8x+3
Now compare like terms
⇒2b=8∴b=4
⇒b+c=3⇒4+c=3⇒c=3-4∴c=-1
Hence option (B) is the correct option.
The value of b and c for which the identity f(x+1) - f(x) = 8x + 3 is satisfied, where f(x)=bx2+cx+d are