The correct option is B −12
Formulaused
2sinAcosB=Sin(A+B)+sin(A−B)
Sin(−θ)=−sinθ
Given
cos2π7+cos4π7+cos6π7
multiplydivideby2sinπ7
12sinπ7[2sinπ7cos2π7+2sinπ7cos4π7+2sinπ7cos6π7]
⇒12sinπ7[sin3π7+sin(−π7)+sin5π7+sin(−3π7)+sin7π7+sin(−5π7)]
⇒12sinπ7[sin3π7−sin(π7)+sin5π7−sin(3π7)+sinπ−sin(5π7)]
⇒12sinπ7[−sin(π7)+sinπ][sinπ=0]
⇒−sinπ72sinπ7
⇒−12