The correct option is C 0.5 and −0.5, respectively
(i)∫10(∫10x−y(x+y)3dy)dx
Let x+y=t∴dy=dt
y=(t−x)
So after chaning the limits we get,
=∫10∫x+1x(2x−t(t3)dt)dx
=∫10(∫x+1x(2xt3−1t2)dt)dx
=∫10(−xt2+1t)x+1xdx
=∫10[1(x+1)2]dx=0.5
(ii)∫10(∫10x−y(x+y)3dx)dy
Let x+y=t
dx=dt
x=(t−y)
So after changing the limits we get,
=∫10(∫1+yy(t−2y)t3dt)dy
=∫10{∫1+yy(1t2−2yt3)dt}dy
=∫10[−1t+yt2]y+1ydy
=∫10−1(y+1)2dy=−0.5