The correct option is D (−2√6,−4√6)∪(2√6,4√6)
Ww know that,
x2+2x+4x2+6x+8<0⇒(x+1)2+3(x+2)(x+4)<0
So,
−4<x<−2
Now finding the minima of the function,
f(x)=4+k2x−2x3⇒f′(x)=k2−6x2=0⇒x2=k26⇒x=±|k|√6x1=|k|√6, x2=−|k|√6
f′′(x)=−12x⇒f′′(x2)>0
So x2 is the point of minima,
∴−4<x2<−2⇒−4<−k√6<−2⇒2√6<|k|<4√6⇒k∈(−2√6,−4√6)∪(2√6,4√6)