The values of λ for which the equation
Given (x2+3x+5)2−(λ−3)(x2+3x+4)(x2+3x+5)+(λ−4)(x2+3x+4)2=0
So,
Dividing the given equation by (x2+3x+4)2 it becomes y2−(λ−3)y+(λ−4)=0....(1)where, y=x2+3x+5x2+3x+4=1+1x2+3x+4 =1+1(x+32)2+74⇒ y>1 and (at x=−32) will be ≤1+17/4⇒ y≤117Now solving for equation (1)y=(λ−3)±√(λ−3)2−4(λ−4)2=[α,β]∴ at least one of [α,β]∈[1,117] ⟶[real value]∴ (λ−3)2>4(λ−4) for real value of y.⇒ λ2−10λ+25>0⇒ (λ−5)2>0⇒ λ>5Again λ−4≤117⇒ λ≤397∴ 5<λ≤397Ans Option C.