Giventhat(ˆi+ˆj+ˆk)x+(3ˆi−3ˆj+ˆk)y+(−4ˆi+5ˆj)z=λ(xˆi+yˆj+zˆk)⇒(x+3y−4z)ˆi+(x−3y+5z)ˆj+(3x+y)ˆk=(λxˆi+λyˆj+λzˆk)⇒x+3y−4z=λx⇒(1−λ)x+3y−4z=0−−−−(1)x−3y+5z=λy⇒x−(λ+3)y+5z=0−−−−−(2)and,3x+y=λz⇒3x+y−λz=0−−−−−(3)now,⎡⎢⎣1−λ3−41−(λ+3)531−λ⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣000⎤⎥⎦⇒⎡⎢⎣1−λ3−41−(λ+3)531−λ⎤⎥⎦=0⎡⎢⎣⎡⎢⎣xyz⎤⎥⎦≠⎡⎢⎣000⎤⎥⎦⎤⎥⎦3x+4y=9−−−(1)y=mx+1−−−−(2)Togetx−cordinateofpointofintersectionof(1)&(2)3x+4(mx+1)=9⇒x=9−43+4m=54m+3x−co−ordianteisinteger4m+3=−1,+1,−5,+5possibletake4m+3=−1⇒m=(−1)itistrue4m+3=1⇒m=−12itiswrong4m+3=−5⇒m=−2itistrue4m+3=+5⇒m=12itiswrongso,intergervalueofmare(−1,−2)2integer