The correct option is C ϕ
Given: y=(m2−9)x2+(m−3)x−7, y≥−1
On comparing with standard quadratic expression y=ax2+bx+c,we get a=m2−9,b=m−3,c=−7.
Here, we have given that the given equation is always greater than or equal to −1, which means the minimum value of the expression is −1, and the parabola is opening upward.
∴a>0⇒m2−9>0
⇒(m+3)(m−3)>0
⇒m∈(−∞,−3)∪(3,∞)
And, −D4a≥−1
−(b2−4ac)4a≥−1
−((m−3)2−4(m2−9)(−7))2(m2−9)≥−1
⇒(m2−6m+9+28m2−252)2(m2−9)≤1
⇒29m2−6m−243≤2(m2−9)
⇒27m2−6m−225≤0
⇒9m2−2m−75≤0
⇒9m2−27m+25m−75≤0
⇒9m(m−3)+25(m−3)≤0
⇒(m−3)(9m+25)≤0
⇒m∈[−259,3]
Final values of m for which we have solution is the intersection of two cases
m∈[−259,3]∩(−∞,−3)∪(3,∞)
m∈ϕ