The correct option is B (1,7)
Given expression is y=mx2+3x−4−4x2+3x+m
Finding the common roots of numerator and denominator
mx2+3x−4=0−4x2+3x+m=0⇒(m+4)x2−(m+4)=0
When m=−4, then numerator and denominator becomes same, so m≠−4
⇒x2=1⇒x=±1
Now, f(x)=mx2+3x−4
We know that,
f(−1)f(1)<0⇒(m−7)(m−1)<0⇒m∈(1,7)