The correct option is B [−4,3−√212]∪(1,∞)
Given f(x)=(√p+41−p−1)x5−3x+ln5
f′(x)=(√p+41−p−1)5x4−3
Since, f(x) is decreasing,
f′(x)<0
(√p+41−p−1)5x4−3<0∀xϵR
⇒√p+41−p−1≤0
If −4≤p<1 then
⇒√p+4≤1−p
⇒p+4≤1−2p+p2
⇒p2−3p−3≥0
⇒p≤3−√212or3+√212≤p
⇒pϵ[−4,3−√212]
If p>1 then √p+4≥1−p
⇒ Always true for p>1
⇒pϵ[−4,3−√212]∪(1,∞)