c a=log23, b=23, c=1 Given: fx=1+ax1x, x<0b, x=0x+c13-1x+112-1, x>0 If fx is continuous at x=0, then limx→0-fx=limx→0+fx =f0 ⇒limx→0-fx=f0⇒limh→0f-h=f0⇒limh→01-ah-1h=f0⇒limh→0alog 1-ah-ah=log b⇒a×1=log b ∵limx→0log 1+xx=1⇒a=log b Also, limx→0+fx =f0 ⇒limx→0+fx=f0⇒limh→0fh=f0⇒limh→0h+c13-1h+112-1=f0⇒limh→0h+c13-1h+112-1×h+112+1h+112+1=f0⇒limh→0h+c13-1h×h+112+1=b⇒limh→0h+c13-1h×limh→0h+112+1=b⇒limh→0h+c13-1h×2=b⇒limh→0h+c13-113h+c-c=b2⇒c13-13=b2 ∵ limx→axn-anx-a=nan-1, where c=1⇒13=b2⇒23=b∴ a=log23