The correct option is C 29
(1−2a)x2−6ax−1=0
ax2−x+1=0
x2−6a−1=−x(1−2a)+a=1−(1−2a)+6a2
⇒x2−(6a+1)=−x1−a=16a2+2a−1
x2−(6a+1)=−x1−a
x=6a+11−a........(i)
−x1−a=16a2+2a−1
x=a−16a2+2a−1.......(ii)
from(i)and(ii)
6a+11−a=a−16a2+2a−1
⇒(6a+1)(6a2+2a−1)=−(a−1)2
⇒36a3+12a2−6a+6a2+2a−1=−a2−1+2a
⇒36a3+19a2−6a=0
⇒a(36a2+19a−6)=0
⇒a(9a−2)(4a+3)=0
a=0,29,−34
Henceonecommonrootis29