The values of θ lying between θ=0 and θ=π2 and satisying the equation
∣∣
∣
∣∣1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sin4θsin2θcos2θ1+4sin4θ∣∣
∣
∣∣=0 are
7π24
11π24
We have
∣∣
∣
∣∣1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sinθsin2θcos2θ1+4sin4θ∣∣
∣
∣∣=0
Operating c1→C1+C2, we get
∣∣
∣
∣∣2cos2θ4sin4θ21+cos2θ4sin4θ1cos2θ1+4sin4θ∣∣
∣
∣∣=0
Operating R1→R1−R2⇒R2−R3, we get.
∣∣
∣∣0−1011−11cos2θ1+4sin4θ∣∣
∣∣=0
Expanding along R1,weget1+4sin4θ+1=0
or 2(1+2sin4θ)=0
or sin4θ=−12⇒4θ=π+π6
or 2π−π6
⇒4θ=7π6or11π6⇒θ=7π24or11π24