The correct option is B x∈[1,∞)
Let θ=tan−1x, θ∈(−π2,π2)
Let f(x)=2tan−1x+sin−12x1+x2=2tan−1tanθ+sin−1sin2θ
As θ∈(−π2,π2)⇒2θ∈(−π,π)
There will be three cases
Case 1:
−π2<2θ<π2
2tan−1x+sin−12x1+x2=2θ+2θ=4θ=4tan−1x
So its dependent on x∈(−1,1) (∵−π2<2θ<π2)
Case 2:
π2≤2θ<π
⇒0<π−2θ≤π2
2tan−1x+sin−12x1+x2=2θ+sin−1sin(π−2θ)=2θ+π−2θ=π
It is a constant ∀x∈[1,∞)
Case 3:
−π<2θ≤−π2
Similar to case 2
f(x)=−π, ∀ x∈(−∞,−1]
f(x)=⎧⎨⎩−π, x≤−14tan−1x, −1<x<1π, x≥1