The values of x in [−2π,2π], for which the graph of the function y=√1+sinx1−sinx−secx and y=−√1+sinx1−sinx+secx, coincide are
A
[−2π,−3π2)∪(3π2,2π]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(−3π2,π2)∪(π2,3π2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(−π2,π2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
[−2π,2π]−{±π2,±3π2}
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are A[−2π,−3π2)∪(3π2,2π] C(−π2,π2) Equating both the expression we get √1+sinx1−sinx−secx=−√1+sinx1−sinx+secx 2[√1+sinx1−sinx−secx]=0 √1+sinx1−sinx−secx=0 |1+sinxcosx|−secx=0 |secx+tanx|−secx=0 secx+tanx−secx=0 This implies tanx=0 or x=nπ However only n=2k satisfies the above equation. Hence x=2kπ where k∈N. And −secx−tanx−secx=0 Or 2secx+tanx=0 Or 1cosx[2+sinx]=0 No solution ... For the graphs coincide, sin(x) has to be a one one function in that given domain. Hence the required domain is (−π2,π2) Or [−2π,−3π2)∪(3π2,2π].