sinx+cosx=2√2sinx.cosx
sin(x)√2+cos(x)√2=2sin(x)cos(x)
sin(x+π4)=sin2x
Or
sin(2x)−sin(x+π4)=0
2cos(3x2+π8)sin(x2−π8)=0
Hence
cos(3x2+π8)=0
Implies
3x2+π8=(2n+1)π2
Or
3x+π4=(2n+1)π
3x=(2n+1)π−π4
x=(2n+1)π3−π12...(i)
And
sin(x2−π8)=0 implies
x2−π8=nπ
x−π4=2nπ
x=2nπ+π4...(ii)
Hence from i and ii, we get k=4.