wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The values of x which satisfies the equation
sinx+cosx22sinxcosx=0 is x=(2m+1)πk when n is even (2m+13)ππ3k when n is odd. Find the value of k.

Open in App
Solution

sinx+cosx=22sinx.cosx
sin(x)2+cos(x)2=2sin(x)cos(x)
sin(x+π4)=sin2x
Or
sin(2x)sin(x+π4)=0
2cos(3x2+π8)sin(x2π8)=0
Hence
cos(3x2+π8)=0
Implies
3x2+π8=(2n+1)π2
Or
3x+π4=(2n+1)π
3x=(2n+1)ππ4
x=(2n+1)π3π12...(i)
And
sin(x2π8)=0 implies
x2π8=nπ
xπ4=2nπ
x=2nπ+π4...(ii)
Hence from i and ii, we get k=4.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon