The correct option is A −1,1−2ω and 1−2ω2
We have,
(x−1)3+8=0⇒(x−1)3=−8⇒x−1=(−8)1/3
⇒x−1=2(−1)1/3
⇒x−1=2(−1) or x−1=2(−ω), x−1=2(−ω2)
[∵(−1)1/3=−1 or −ω or −ω2]
⇒x−1=−2 or x−1=−2ω or x−1=−2ω2
⇒x=−1 or x=1−2ω or x=1−2ω2.
Hence, the solutions of the equation (x−1)3+8=0 are −1,1−2ω and 1−2ω2