The correct option is A 1,1,1
The given system of equations is
x+2y+3z=6 ...(i)
3x−2y+z=2 ...(ii)
and 4x+2y+z=7 ...(iii)
Here, A=⎡⎢⎣1233−21421⎤⎥⎦, B=⎡⎢⎣627⎤⎥⎦ and X=⎡⎢⎣xyz⎤⎥⎦
∴|A|=∣∣
∣∣1233−21421∣∣
∣∣
=1(−2−2)−2(3−4)+3(6+8)
=−4+2+42=40
Now, adjA=⎡⎢⎣−4481−118146−8⎤⎥⎦
∴A−1=1|A|adjA=140⎡⎢⎣−4481−118146−8⎤⎥⎦
Now, X=A−1B=140⎡⎢⎣−4481−118146−8⎤⎥⎦⎡⎢⎣627⎤⎥⎦
=140⎡⎢⎣−24+8+566−22+5684+12−56⎤⎥⎦=140⎡⎢⎣404040⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣111⎤⎥⎦
⇒x=1,y=1,z=1