The variance of 15 observations is 4. If each observation is increased by 9, find the variance of the resulting observations.
We have, n= 15, and σ2 = 4
Now each observation is increased by 9
Suppose X = x+ 9 be the new data,
∴¯(X)=115∑(xi+9)=(115×∑xi)+9=¯¯¯¯¯X+9
⇒∑x2i=∑(xi+9)2=∑x2i+∑18xi+∑92
Since ,σ2=5
⇒1n∑x2i−(¯¯¯¯¯X)2=4
Now, for the new data :
σ2=1n∑x2i−(¯¯¯¯¯X)2=115(∑x2i+∑18xi+∑92)−(¯¯¯¯¯X+9)2
=115∑x2i+115∑18xi+115∑92−(9)2−(18¯¯¯¯¯X)−(¯¯¯¯¯X)2
=[115∑x2i−(¯¯¯¯¯X)2][115∑18x2i−(18¯¯¯¯¯X)2]+[115∑92−(9)2]
=[115∑x2i−(¯¯¯¯¯X)2][18×115∑xi−(18¯¯¯¯¯X)]+[115×15×(9)2−(9)2]
=115∑x2i−(¯¯¯¯¯X)2=4