The variance of 20 observation is 5. If each observation is multiplied by 2, find the variance of the resulting observations.
Let x1,x2,x3.....x20 be the 20 observations
Variance (X) = 5
Variance (X) =120×∑(xi−¯¯¯¯¯X)2=5
(Here, ¯¯¯¯¯X is the mean of the given observations)
Let u1,u2,u3.....u20 be the new observations, such that
u1=2xi(fori=1,2,3...20)
Mean = ¯¯¯¯U=∑20i=1uin=∑20i=12xi20 [Substituting ui from eq . (i) and taking n as 20]
=2×∑20i=12xi20=2¯¯¯¯¯X
ui−¯¯¯¯U=2xi=2¯¯¯¯¯X ( for i = 1, 2, .... 20 )
= 2(xi)¯¯¯¯¯X)
ui−¯¯¯¯U=(2(xi=¯¯¯¯¯X))2 (squaring both sides)
= 4(xi−¯¯¯¯¯X)2
∴∑20i=1(ui−¯¯¯¯U)2=∑20i=14(xi−¯¯¯¯¯X)2
∑20i=1(ui−¯¯¯¯U)220==∑20i=14(xi−¯¯¯¯X)220
=∑20i=14(xi−¯¯¯¯X)220
Variance (U) = Variance (X)
= 4×5=20
Thus variance of the new observations is 20.