Let observations are x1,x2,x3……x20
12020∑i=1(xi−¯x)2=5
⇒20∑i=1(xi−¯x)2=100 …(1)
New, observations are, 2x1,2x2,2x3,.........,2x20
Their mean, ¯¯¯xnew=2(x1+x2+.........x20)20=2 ¯¯¯x
Now, variance =120 20∑i=1(2xi−2 ¯¯¯x)2
=120×420∑i=1 (xi−¯¯¯x)2
from equation (1)
=120×4×100=20
Alternate Solution
If variance of n obsevations is σ2
Now each observation is multiplied by k, k∈R,
then variance of new observations :σ2new=k2σ2
Here, k=2, σ2=5
Now, σ2new=22×5=20