The vector α^i+2^j+β^k lies in the plane of vectors →b=^i+^j and →c=^j+^k and bisects the angle between →b and →c Which one of the following gives possible values of α and β
A
α=2,β=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
α=1,β=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
α=2,β=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
α=1,β=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dα=1,β=1 →b.(α^i+2^j+β^k)=|^b|(√α2+4+β2)cosθ (α+2)=(√2)(√α2+4+β2)cosθ------------(1) →a.(α^i)+α^j+β^k=|→a|(√22+4+β2)cosθ (α+β)=(√2)√α2+4+β2cosθ--------------(2) α+22+β=1 α=β------------(3) 2^i+2^j+β^k=μ(^i+^j)+λ(^j+^k) (collineorlity) μ+λ=2 μ=αλ=β α+β=2 --------------(4) α=1β=1