wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The vector b =3i^+4k^ is to be written as the sum of a vector α parallel to a =i^+j^ and a vector β perpendicular to a . Then α =
(a) 32i^+j^

(b) 23i^+j^

(c) 12i^+j^

(d) 13i^+j^

Open in App
Solution

(a) 32i^+j^

Let:α=a1i^+a2j^+a3k^β=b1i^+b2j^+b3k^Now,b=3i^+4k^=α+β (Given)3i^+0j^+4k^=a1+b1 i^+a2+b2 j^+a3+b3 k^a1+b1=3; a2+b2=0; a3+b3=4a1+b1=3; a2=-b2; a3+b3=4 ...(1)a=i^+j^ (Given) Also, α is parallel to a.α×a=0i^j^k^a1a2a3110=0-a3i^+a3j^+a1-a2k^=0i^+0j^+0k^a3=0; a1-a2=0 a3=0; a1=a2 ...(2)Since β is perpendicular to a, we getβ. a=0b1i^+b2j^+b3k^. i^+j^=0b1+b2=0b1=-b2 ...(3)Solving (1), (2) and (3), we geta1=32; a2=32; a3=0α=a1i^+a2j^+a3k^ =32i^+32j^+0k^ =32 i^+j^

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Change of Variables
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon