Let →a be the position vector of the point A(−1,−1,2)
∴→a=−^i−^j+2^k
Given equation of line is
2x−2=3y+1=6z−2
2(x−1)=3(y+13)=6(z−13)
x−112=y+1313=z−1316
∴ Direction ratios are
12,13,16i.e.3,2,1
Let →b be the vector parallel to required line
→b=3^i+2^j+^k
∴ The vector equation of the line passing through A (→a) and parallel to →b is
¯r=→a+λ→b
¯r=(−^i−^j+2^k)+λ(3^i+2^j+^k)